Functional Characterization of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) N- and C-Terminal Domains during Xenopus laevis Development
نویسندگان
چکیده
Extracellular matrix (ECM) remodeling is essential for facilitating developmental processes. ECM remodeling, accomplished by matrix metalloproteinases (MMPs), is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). While the TIMP N-terminal domain is involved in inhibition of MMP activity, the C-terminal domain exhibits cell-signaling activity, which is TIMP and cell type dependent. We have previously examined the distinct roles of the Xenopus laevis TIMP-2 and -3 C-terminal domains during development and here examined the unique roles of TIMP-1 N- and C-terminal domains in early X. laevis embryos. mRNA microinjection was used to overexpress full-length TIMP-1 or its individual N- or C-terminal domains in embryos. Full-length and C-terminal TIMP-1 resulted in increased lethality compared to N-terminal TIMP-1. Overexpression of C-terminal TIMP-1 resulted in significant decreases in mRNA levels of proteolytic genes including TIMP-2, RECK, MMP-2, and MMP-9, corresponding to decreases in MMP-2 and -9 protein levels, as well as decreased MMP-2 and MMP-9 activities. These trends were not observed with the N-terminus. Our research suggests that the individual domains of TIMP-1 are capable of playing distinct roles in regulating the ECM proteolytic network during development and that the unique functions of these domains are moderated in the endogenous full-length TIMP-1 molecule.
منابع مشابه
Membrane Type-1 Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases-2 RNA Levels Mimic Each Other during Xenopus laevis Metamorphosis
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression l...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملExpanding the Activity of Tissue Inhibitors of Metalloproteinase (TIMP)-1 against Surface-Anchored Metalloproteinases by the Replacement of Its C-Terminal Domain: Implications for Anti-Cancer Effects
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This...
متن کاملLocalization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity.
The tissue inhibitors of metalloproteinases (TIMPs) are a family of four secreted inhibitors of matrix metalloproteinases (MMPs). Recently, additional functions have been attributed to the TIMPs, including cell growth and inhibition of angiogenesis. In particular, we demonstrated that TIMP-3 overexpression using gene transfer induces apoptosis in a variety of cell types and can inhibit vascular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014